
IEEE 7 5 4 and m e − a n experiment in

anonymi z ing a PDF file

(I like to create words.)

In this page I explain a hack I did with the PDF file that contains

the IEEE 754 standard.

I don’t have access to the IEEE website, so I normally would have to

pay to read this file. Except I know some people who have access.

(I mean: access to some publications. Obviously if I enter the IEEE

address in any browser I’ll get some data back in my face.) So I just

asked to them if they could get i t for me.

So they did. And they gave it to me.

Except...

Except if I want to redistribute the file, I can’t.

Well I can, obviously. It’s just a file. I can put it on a website and

there we are, it’s shared.

But my problem is that the f i le contains some data from the people

who gave it to me. So t h e y would be in trouble if IEEE finds the file.

They just look at i t and "oh, but these are these people who

distributed the file to the world. Let’s sue them!"

I am close to these people. I just can’t do that.

Except...

Except, you know, a file is a file. You can edit a file. You can modify

it . You can extract stuff and put new stuff inside. You can do

whatever you want with the file.

whatever you want with the file.

So you can remove the stuff that identify those who gave this

particular PDF file to me.

That’s what I did.

Here is some code to prove my claim.

Let me give some more details, will you my dear? It might be useful

to young hackers out there. Some kind of lesson of hackery. I use

the C language. I work under UNIX.

(Ah no. I don’t distribute the clean IEEE 754 file.)

(I AM NOT A CRIMINAL!)

(Well...)

What is a PDF file?

A PDF file is a file that conforms to a given structure, namely the

PDF one. 1 �

A description of it is freely available from Adobe. See h e r e. (Adobe,

l ike many big private corporations and many insti tutions, changes

i ts internet website’s structure from time to t ime. You might need

to dig a bit to get the specifications. Alternatively you can look for

"PDF specifications" with your favorite search engine.)

Since the PDF file I want to hack has a version of 1.4, I went t h e r e to

download t h a t. The current version, as of writing, is 1.7. Don’t ask

me why people like to change stuff when everything works fine. It’s

called "business" and it’s something I’m completely unable to

understand since i t is so irrat ional.

So by reading this (big) documentation, you understand the

structure of a PDF.

A PDF is made of several parts.

A PDF is made of several parts.

First part: the header. In our case, the first l ine of the file contains

the version (%PDF−1.4) and the second contains a comment with

byte greater than 127. These bytes are here, as prescribed by Adobe,

to inform software out there that the fi le contains binary data, ie.

bytes greater than 127. Why does i t matter? Because the internet is

an old beast and in the past (and maybe sti l l now) some links or

protocols or both send only bytes smaller than 127 in some cases.

Putting high bytes early in the file forces them to switch to a full 8

bits mode, thus accepting bytes from 0 to 255 (this might not be

correct, my memory is a bit, you know, well, bad).

Anyway, what matters to us here is that these bytes are normally

chosen at random. But how do we know? So the file we are going

to produce won’t contain these numbers, but some others, just in

case IEEE attach some meaning to them.

After the header you (generally) have objects, a lot of them. In our

case we have more than 700 objects. What does an object look

like? Well, something like the following.

 2 0 obj<</Type/Pages/Kids[3 0 R 4 0 R 5 0 R 6 0 R 7 0 R]/Count 70>>

endobj

You find a first number, which is the object’s ID, starting from 1

and couting up, then a 0 (generally, can be used for stuff we don’t

care here) (all the objects in the IEEE file have a 0 here). Then you

have obj then some stuff . Then, on the same or another l ine, you

have endobj to, guess what? end the definition of an object.

Some objects may be compressed, which complicates slightly the

extraction, but that’s not very hard either. 2 �

Note that an objet’s definition does not necessarily has to fi t in one

line. In our case IEEE put almost everything on the first line, which

eases our l ife, but i t’s not mandatory.

eases our l ife, but i t’s not mandatory.

After all the objects, you find the trailer, which contains something

called xref. This stuff lists all the objects with their starting offset

in the fi le. Then you find some more stuff useful for programs so

you must keep them. One of the things in there is called / I D and

this one looks strange so we will remove it. Maybe IEEE tracks the

file with the help of this string.

And that’s it for a PDF file. It’s nothing particulary tricky to

understand and manipulate. You must record where in the f i le

each object resides. And if you want to modify an object i t changes

the position of all the following objects. And this is a very bad

design if I dare. But my bet is Adobe doesn’t care I don’t like their

design.

Extracting objects

So we want to modify this IEEE file, to remove stuff put in there to

identify who downloaded it , to "anonymize" the file.

How do we do that?

Well, after some thinking the conclusion pops up, obvious. We have

to extract all the objects, modify those we have to and glue back

everything together when we are done.

We can’t modify the file directly.

Why not? I mean, we just could overwrite the data we don’t want in

and that’s i t , we are done.

But it’s not that simple.

First, the size of a file is an information per se. So keeping it might

be bad. We will remove objects (or more specifically objects’

content since removing an object is a pain; you must then remove

all references to it and this requires a lot of parsing).

all references to it and this requires a lot of parsing).

Then some objects are compressed. Uncompressing them and

storing them back changes their s ize.

(Well, after a bit of thinking, this does not appear to be that

important. Emptying objects reduces their sizes. And an

uncompressed object is described with less characters. So we could

simply put an empty version of the object and the overwrite the

remaining space with spaces.)

So we are up to extract object. And this is not very easy at first.

And here comes a bit of hacking. 3 �

The IEEE file is very friendly. Objects are all stored the same way.

At the start of a line, you have the object’s ID, a 0 and obj. And they

start r ight after the header. So, just bypass the header, and read

objects, up to a point where what you read is not an object

anymore .

And since objects start with a simple line, just read one line. Check

for the presence of obj in it . If i t is present you have an object and

keep going. If not you are done with the objects and you are up

with the trailer.

And you know what? It’s even simpler than that. After you smoke

the header, read just one byte. If it’s x you are in the trailer, if not

it’s an object.

How do I know that? By looking inside the file. A cat file | less is

very useful. If you need to look at the binary data, I suggest using

o d like od −tx1 −ta file | less (do a m a n o d to get more options).

So I looked at the fi le and just saw that to discriminate between the

start of an object and the trai ler I just needed to look for an x.

I normally would have to scroll a lot to get to the trailer when I

examine the file. Fortunately, there is tail a program that only

shows the last lines of a file. To see the last 400 lines of a file you do

shows the last lines of a file. To see the last 400 lines of a file you do

tail −n 400 file | less. This saves a lot of scrolling time.

Here comes some code I wrote based on all that .

First , the main function.

 int main(void) { header();

while (obj()) dump_obj();

trailer();

return 0;

}

See, it’s very short. It first deals with the header, then gets the

objects, then the trailer.

By looking at the file, I know the header is only made of two lines,

so here is header.

 void header(void) {

4

�FILE *f = fopen("header.obj", "wb");

ERR(f, "header");

read_line();

dump_buffer(f);

read_line();

dump_buffer(f);

if (fclose(f)) ERR(0, "header");

}

Very clear too.

For obj things are a bit more complicated.

For obj things are a bit more complicated.

 int obj(void) { int c;

c = getchar();

eof(c);

if (c == ’x’) { ungetc(c, stdin);

return 0;

} no++;

size = 0;

put_char(c);

while (1) { c = getchar();

eof(c);

put_char(c);

if (c == ’\n’) if (endobj()) break;

} return 1;

}

As you can see, we first check for an x. Then we read everything

until we see endobj. Once again, by inspecting the file, I saw that

endobj only appears at the beginning of a line, so I look for it only

when I received an "end of line" character, \ n.

What does endobj do? It just reads seven characters. (Seven and

not six because I also saw that after endobj there is an "end of line"

character which I include, just to get the correct start for the next

object , or the x starting the trailer). If at some point it doesn’t get

the expected byte, i t returns 0, meaning we don’t read endobj yet.

Otherwise i t returns 1.

 int endobj(void) { int c;

c = getchar();

eof(c);

put_char(c);

if (c!=’e’) return 0;

c = getchar();

eof(c);

eof(c);

put_char(c);

if (c!=’n’) return 0;

5

�c = getchar();

c = getchar();

c = getchar();

c = getchar();

c = getchar();

return 1;

}

eof(c); eof(c); eof(c); eof(c); eof(c); put_char(c); put_char(c);

put_char(c); put_char(c); put_char(c); if if if if if (c!=’d’) return 0;

(c!=’o’) return 0; (c!=’b’) return 0; (c!=’j’) return 0; (c!=’\n’) return 0;

One important point here: if endobj appears in an object we are

doomed. I played the game, because it makes my life much easier.

And I won! No endobj in weird places in this file. Otherwise more

complicated parsing would have been required. And you may not

know it since you don’t know me but I’m a very lazy person.

So that’s it for the objects.

I pass the trailer’s extraction. We simply read everything past the

last object and put it in a file.

Uncompressing compressed objects

Once we extracted the objects we have to inspect their content, one

by one, to decide what to do (keep the object, empty it or modify it).

And there comes a problem. Some objects are compressed. We see

something like the following when using less.

 331 0 obj<</Filter/FlateDecode/Length 10>>stream x<9C>+<E4>^B^@^@<EE>^@| endstream endobj

Obviously, we have some more work to do.

And there comes something very important for a hacker. You just

cannot face a problem like this one and solve i t out of nothing, as

by magic. You need something. You need enough knowledge to get

the r ight intui t ion at how to at tack the problem.

You need, in a word, culture.

So here you go read the PDF specifications to learn about this

/Filter/FlateDecode stuff. You read, page 46, that this encoding

method uses zl ib/deflate.

And there comes your culture. Because, what to do of this

knowledge? What if you don’t know what this zlib stuff is?

By reading others’ code, by browsing a lot of software on your

system and in the internet, by compiling by hand, by carefully

looking at what happens then, and also, of course, by using

software libraries, 6 �you build a knowledge base in yourself. You

become sort of an expert .

And there, in the case of xlib/deflate, I know what it is, and I know

how to handle that . I t means that the data has been compressed

and that I can uncompress i t using the popular xlib library, which

everyone uses or almost. And it’s almost certainly installed on your

computer. Dozens and dozens of software you use on a daily basis

use it . And you can use it too.

So you read /usr / include/z l ib .h (which is a bit of a pain, but you

can manage it) and after a few trials and errors, you quickly write

some code to uncompress a zl ib’s s tream.

And you end up with something like the following, extracted from

deflate.c. (Yes, I reversed inflate/deflate in my brain. Normally

deflate is to decrease the size of a file, but I wrongly thought it

deflate is to decrease the size of a file, but I wrongly thought it

m e a n t decompress. Poor french native speaker of me...)

 strm.next_in = (unsigned char *)buf;

strm.avail_in = size;

strm.next_out = (unsigned char *)out;

strm.avail_out = 4000000;

strm.zalloc = 0;

strm.zfree = 0;

if (inflateInit(&strm) != Z_OK) { fprintf(stderr, "inflateInit failed.\n");

return 7;

} if (inflate(&strm, Z_FINISH) != Z_STREAM_END) { fprintf(stderr, "inflate failed.\n");

return 8;

} if (inflateEnd(&strm) != Z_OK) { fprintf(stderr, "inflateEnd failed.\n");

return 9;

}

It looks like magic? It’s not. We setup a s t r m s tructure, then we call

inflateInit, inflate and inflateEnd in order and check that the re turn

value is correct.

I had troubles at f irst for inflate, not checking against

Z_STREAM_END bu t Z_OK. I read /usr / include/z l ib .h too fast .

I t might happen to you as well . You may read documention too

fast , or understand it wrongly, leading to some time trying to

understand what’s wrong. I t may become very furstrating after

some time, especially when you don’t hack just for yourself, with

no t ime pressure, but when you work in a company, with a t ight

schedule. Key here is to be patient. In most of the cases, when

using some new library, the problem comes from you. In some

cases (I had the problem once a few years ago with ptrace; the

manpage was wrong) the error is in the documentation. In some

other cases i t’s a bug in the software. How to know 7 �where the

problem comes from so that you spend more t ime solving i t and

less time tracking it? It’s hard to answer. There again culture plays

a role. When you start your hackery’s journey, you know nothing.

So you spend a lot of time doing useless things. After a while

So you spend a lot of time doing useless things. After a while

(several years) you start to understand what’s going on and you

focus on the important s tuff .

In my case, I more or less applied the following reasoning to dig

the problem. Since zlib is a well know library, since PDF files are

also well established, i t is unlikely that one or both of these beasts

have a problem. The problem very certainly comes from me. What

did I do wrong then? I read /usr / include/z l ib .h, maybe a bit too

quickly. So maybe I should read it again, more carefully. So I did.

And I then found that using Z_OK was inappropriate in my case. I

had to use Z_STREAM_END.

That’s how you look for a bug in your software. First, try to

remember how you wrote i t . Then value each step with a

"confidence" number. You obtain a list of actions, the first being

the most probably wrong and the last being practically 100%

correct. (Normally you only have very few "most probably wrong"

actions at a given point of your coding. Organizing your work is

part of the journey too. It’s a skill to get.) Then you review actions

in order, looking carefully where you originally just looked quicky

at some stuff .

You need to be humble. Most of the time y o u are the cause of the

error . Y o u didn’t understand something clearly enough. Y o u typed

something wrong on your keyboard. Y o u called some functions in

the wrong way, in the wrong order, with wrong arguments. Y o u

didn’t check return values correctly and implemented an

appropriate response (l ike ending the program or displaying a

meaningful message on the terminal) .

But you must also trust your judgment. Sometimes you review all

your possible mistakes and nothing comes out of i t . So the problem

is from somewhere else. It might be a library, the compiler, the

language you use, the operting system, the hardware, anything.

How do you know that you are not guil ty and that the problem is

from another part of the system? And which part? How do you

decide you digged enough in one direction that you are almost

confident the problem is not here?

confident the problem is not here?

There is no clear answer. One important thing to do when facing a

problem is trying to decrease its size, extract it . You have a bug in

your 1,000 lines program? Try to write a very small one that also

exhibits the problem. The key point is the ability to extract a

"model" on which you can think with full confidence. Something

like "okay, I extracted a small version of my program; I am now

100% sure that if 8 �I don’t find a problem with this l i t t le program

then my bigger program is not faulty but the sytem, somewhere, is .

Then I’ll try to narrow it to the correct part of the system,

eliminating, one by one, every possible cause, up to the point I am

left alone with the guilty beast. I will then shoot it in the head and

I will be left with a perfectly correct program, solving my problem

as it is intended."

And that takes a lot of t ime, a lot of trials and errors, a good

analytical brain and a huge dose of patience and humility.

And here comes the m a i n function of deflate.c.

 int main(void) { char *t;

char *l1, *l2;

int l;

int c;

z_stream strm;

read_line();

put_char(0);

if (!strstr(buf, "obj<<")) { fprintf(stderr, "WARNING: no obj found.\n");

return 1;

} if (!strstr(buf, ">>stream")) { fprintf(stderr, "no stream found.\n");

return 2;

} if (!strstr(buf, "/Filter/FlateDecode")) { fprintf(stderr, "no filter flatdecode found.\n");

return 3;

} if (!(t=strstr(buf, "/Length "))) { fprintf(stderr, "no length found.\n");

return 4;

} if (sscanf(t, "/Length %d", &l) != 1 || l <

0) { fprintf(stderr, "bad length found.\n");

0) { fprintf(stderr, "bad length found.\n");

return 5;

} fprintf(stderr, "INFO length %d\n", l);

l1 = strdup(buf);

ERR(l1,"strdup");

l2 = malloc(size);

ERR(l2,"malloc");

size = 0;

for (;

l;

l−−) { c = getchar();

eof(c);

put_char(c);

} strm.next_in = (unsigned char *)buf;

strm.avail_in = size;

strm.next_out = (unsigned char *)out;

strm.avail_out = 4000000;

9

�strm.zalloc = 0;

strm.zfree = 0;

if (inflateInit(&strm) != Z_OK) { fprintf(stderr, "inflateInit failed.\n");

return 7;

} if (inflate(&strm, Z_FINISH) != Z_STREAM_END) { fprintf(stderr, "inflate failed.\n");

return 8;

} if (inflateEnd(&strm) != Z_OK) { fprintf(stderr, "inflateEnd failed.\n");

return 9;

} fprintf(stderr, "INFO output bytes %ld\n", strm.total_out);

new_first_line(l1, l2, strm.total_out);

printf("%s", l2);

fwrite(out, strm.total_out, 1, stdout);

while (1) { c = getchar();

if (c == EOF) break;

printf("%c", c);

} fflush(stdout);

return 0;

}

}

We look at the first line in the file. By inspecting the extracted

objects with less we found out that the first l ine contains all what

is necessary to decide if the object is compressed or not. That’s

what we do, that’s what all the tests do.

After that, if we indeed have a compressed file, we get the length of

the compressed data , read this data , decompress i t , and put

everything back in a new, uncompressed, object. I don’t show you

new_first_line, i t just removes /Filter/FlateDecode and changes the

/ L e n g t h s tuff .

One interesting point here. The program will produce an empty

output (and some messages on stderr). And here is how I run it on

al l the produced objects .

 for i in ????.obj;

do ./deflate <

$i >

out/$i;

done

So in o u t / some files will be empty. We can use that information to

overwrite empty fi les (which thus are not compressed) with the

current version. Here is how we do that . 10 �

 cd out;

find −empty −exec cp ../{} . \;

This line (and maybe the previous one) may look a bit magic.

There again we come back to culture. These commands (for, f ind, ...)

and their arguments are "common knowledge" you acquire over

t ime, by reading documentation, trying the command by yourself ,

and looking at how other people use them. There is no magic, just

and looking at how other people use them. There is no magic, just

cul ture .

Once it’s done you are with objects in o u t /, that you finally can

fully inspect and modify.

Modifying objects

In writing this webpage, I chose a l inear order to present steps

involved in the analysis and modification of a PDF file. The reality

is that after I extracted the objects, and even before uncompressing

them, I wrote glue.c that takes them al l back and glues them

together in a new PDF file. So maybe I should have put the "gluing

objects" before this section. I don’t know. When you hack you often

write stuff "out of order" so as to have a few problems to solve at

once. By writing glue.c early, just after the extraction, I could check

that the extraction was correct, that the resulting PDF file obtained

by collecting all the objects was similar to the original PDF. In fact,

I needed to know if the extraction was correct. So obviously, the

way to test that is to put them all back together and see what

happens. And since I would need such a tool later anyway, why

not write it right now? So that’s why I wrote glue.c r ight after

extract.c.

But let’s look a bit at what needs to be done with our

uncompressed objects .

I read them all . All the objects. More than seven hundreds of them.

Just to see what was inside, what was needed to be removed to

anonymize i t .

I quickly found that some objects contained nothing but a text

identifying who download the file.

A little surprise was to find several of those objects, all identical.

Why not put only one? It’s a clear loss of space. Maybe they thought

i t would be harder to remove. Maybe they just used some software

that was suboptimal. It’s not a big issue, but i t forces us to do more

than just edit ing by hand one fi le. We 11 �have to come up with an

than just edit ing by hand one fi le. We 11 �have to come up with an

automatic solut ion.

So here is the magic line I quickly found.

 cd out;

for i in ‘grep −i limited *|cut −d : −f 1‘;

do ../empty $i > $i;

done

And here comes empty .c.

 #include <stdio.h>

int main(int n, char **v) { int i;

sscanf(v[1], "%d", &i);

printf("%d 0 obj <</Length 0>>stream\nendstream\nendobj\n", i);

return 0;

}

The weird command l ine does a grep (very common and useful

command in the UNIX world) over all the files, looking for "limited"

(I first checked that "limited" only appeared in interesting files, and

it did, so it’s safe to discrimate files based on this string) and

getting the file’s name out of grep’s answer.

grep normally replies something like the following.

 0025.obj: A B C D limited E F G H

We have the file’s name, double dot, and the line of file that

matches what we look for.

We are interested in the file’s name, and only that.

The wonderful c u t command comes at help here. We ask i t to cut

The wonderful c u t command comes at help here. We ask i t to cut

the first field −f 1 by using the double dot separator −d :. The |

(pipe) is a common mechanism under UNIX to plug one command

to another . The output of the f i rs t command becomes the input of

the other. You can chain many commands that way, manipulat ing

data the way you want.

So after grep and c u t we have a list of files. For each of those we

call empty, that creates an empty object . I t’s important to pass the

file’s name to e m p t y for the objet’s number is written in the file,

and that changes, obviously, with each object. 12 �

Looking at empty .c we see sscanf(v[1], "%d", &i); that will get the

object’s number from the file’s name.

A last note on the command line. We see for i in ‘XX‘ ..., with

backquotes. Those backquotes are very useful . They transform the

ou tput o f the command XX (or l ist of commands piped together)

into arguments in the command l ine for the for i s tuff .

It would have been possible to use xargs here, like in the following.

 grep −i limited *|cut −d : −f 1|xargs ../empty

But I am more familiar with the first version (which may be slower,

or not even work at al l i f too much data comes out of XX s ince

command line’s arguments have a l imited size normally).

So, you have many ways to solve a problem. You don’t need to

learn all of them. What matters is to know one that works, and one

that works fast enough. I could have done everything is C

programs, which is my favorite horse. But I know some shell

commands, and i t’s faster to use them than to write a C program

from scratch. Maybe someone with a deeper knowledge of the shell

and available commands would have done what I did faster. Maybe

using other languages, l ike perl or python, would also speed up the

coding of all this.

coding of all this.

After some time you stick to your tools. Here, you must be careful.

Are your tools good enough for your needs? Shouldn’t you learn a

few other tools? Where is the limit? When stop learning?

No clear answers there either. It’s a matter of taste. And time. If

you can solve a problem in one day with your tools and if you want

to solve it in less than a week then it’s okay. If you need one week

of work for something you want to solve in one day you are in

trouble. If you have no time constraints, do what you want.

Hacking normally involves freedom, no tight schedule, so time

should not be a problem. You normally care about beauty, elegance,

this kind of stuff. Efficiency is a very subjective matter in the

hacking world.

Removing images and colormaps

I don’t trust images. Neither should you. It’s easy to embed hidden

data in images.

So I decided to remove them from the fi le. 13 �

Objects containing images are easy to find. There is / I m a g e on the

first line (in the IEEE PDF file; remember that this file is very

friendly for when you want to parse it ; a lot of information is

present on the first l ine).

I found two images. How did I process them?

I just changed /Wid th and /He igh t, set them to 1 and put a 0 in the

s t r eam.

There also was a colormap. I don’t trust that either. Maybe (but I

seriously doubt i t) there is some hidden data there too. So I

changed it to be full white, just in case.

Then I found some ID stuff here and there, which I also removed,

and a file containing XML data, which I completely removed.

and a file containing XML data, which I completely removed.

All in all , I tried to remove everything that was not necessary and

which I thought would pose an anonymity problem.

Well, the process was not fully done.

I didn’t change text’s objects. I should have changed the spacing of

commands in there. And maybe also their order. I should have

changed the number of objects, their order in the fi le.

I mean, information is everywhere. You can hide a message in

many many ways. If you want to do things properly, you have to

change everything.

The best in our case would be to transform the PDF file by printing

it as images, like p n g images for example, glue them in a file and

distribute that file. Or extract text from them through OCR (optical

character recognition), or even text directly from the PDF file, and

generate a new PDF based on that.

Yes, to be really anonymous, you can’t trust the file you download.

You have to extract the data you care about, and be prepared that

any other data may contain some information useful to identify you.

In my case, I don’t care that much. I seriously doubt they go that

far at IEEE to tag a poor file that costs a few dollars and which

content is already known by many people, many websites, many

sources .

But for images, no. I don’t trust images. Period.

But this process could not be automatized. I would have had to do

it each time I modify something in my programs. 14 �So I just

included the few objects in the sources, and in transform.sh I do the

following.

 for i in *.n;

do cp $i out/‘echo $i|sed −e "s/\.n//"‘;

do cp $i out/‘echo $i|sed −e "s/\.n//"‘;

done

Once again, a bit of shell’s magic.

This time, what we have to do is to overwrite files in o u t / wi th hand

modified versions. These modified files are named with a . n suffix

and are in the current directory.

Here the wonderful sed command shows up. I love this one. Even if

I don’t master it at all. So here I want to take a file’s name like

0123.obj.n and make i t out /0123.obj so tha t c p can do its job (to

copy one file to another). So I ask sed to look for . n and replace i t

with nothing. I use the backquote tr ick to get the name back on the

command l ine and c p proceeds happily.

Note that I also could have put the modified files in a m o d s

directory and do a simple cp mods/* out / but my brain, at that

part icular t ime, was not in this mood. And the command l ine above

came out quickly, so I wasted no time here. I do this kind of

manipulat ions so often that i t ’s hardwired up there in the brain.

That explains why you sometimes see very convoluted solutions to

simple problems. People are used to think in a way, to write code

with a given style they’re used to, that i t ends up as a mess only

them can unders tand .

How to protect against that?

Easy. First, solve your problem. Second, look at your solution with

a critical eye. Third, rewrite your solution to be more elegant.

Obviously this all requires t ime and commitment. In a private

company you generally don’t do that. You have no time, schedule

is tight, your thinking and coding costs a lot. So once you have a

solution you stick to it. This is a very bad way to act. But hey, some

people made some choices at points in history. Private

corporations are one of those choices. They are clearly suboptimal

ways to organize work. But they work, somehow, so as long as it

ways to organize work. But they work, somehow, so as long as it

costs less to organize work this way and gett ing suboptimal

solutions out of this setup, well, it will keep going. It’s very hard to

change such a big system.

This is some kind of hacking in itself, one might say. Change the

world. On a large scale. 15 �But we get out of programs and

computers there, so let’s stay with our simple PDF problem for the

purpose of this webpage.

Recompressing objects

We now have our objects, cleaned up. No identification is possible

anymore. (Unless IEEE uses complex schemes to mark its files,

which I doubt a lot. They might think a PDF file is so complex no

one would ever do the kind of things explained in this webpage.)

It’s time to recreate a PDF file from those object.

A first at tempt was made, where we simply put them back at this

point , without compression whatsoever. The produced fi le was too

big (around 2MB). So a recompression’s step was necessary.

How to recompress? Well, straightforward. Just check if the object

contains a stream. If yes, then compress the stream. If i t turns out

that the compressed version is smaller, put i t in place.

Note that in the original f i le streams are compressed even if the

compressed size is bigger. I t happened for very small streams, but

i t happens nevertheless. What software they use I don’t know, but

it does not work very well, if I may.

With no more useless words, here comes the fi le inflate.c t ha t

compresses a file if i t is compressible.

 #include #include #include #include #include #include

<stdio.h>

<stdio.h>

<stdlib.h>

<zlib.h>

<errno.h>

<string.h>

<ctype.h>

#define ERR do { printf("%s:%d: err\n", __FUNCTION__, __LINE__);

exit(1);

} while (0) char *in;

int size;

int maxsize;

void put_char(char c) { if (size == maxsize) { in = realloc(in, maxsize+=4096);

if (!in) ERR;

} in[size] = c;

size++;

} char out[4000000];

16

�int main(int n, char **v) { int c;

FILE *f;

int l;

char *s;

char *t;

z_stream strm;

int i;

if (n != 2) { printf("gimme a file to process\n");

return 1;

} f = fopen(v[1], "r");

if (!f) ERR;

while (1) { c = getc(f);

if (c == EOF) { if (errno) ERR;

break;

} put_char(c);

} put_char(0);

fclose(f);

if (!(t=strstr(in, ">>stream"))){printf("%s has no stream\n",v[1]);return 0;} s = strstr(in, "/Length ");

if (!(t=strstr(in, ">>stream"))){printf("%s has no stream\n",v[1]);return 0;} s = strstr(in, "/Length ");

if (!s) ERR;

if (sscanf(s, "/Length %d", &l) != 1) ERR;

if (l == 0) {printf("%s has Length = 0, nothing done\n",v[1]);return 0;} t+=9;

if (size >

4000000) ERR;

strm.next_in = (unsigned char *)t;

strm.avail_in = l;

strm.next_out = (unsigned char *)out;

strm.avail_out = 4000000;

strm.zalloc = 0;

strm.zfree = 0;

if (deflateInit(&strm, 9) != Z_OK) { fprintf(stderr, "deflateInit failed.\n");

return 7;

} if (deflate(&strm, Z_FINISH) != Z_STREAM_END) { fprintf(stderr, "deflate failed.\n");

return 8;

} if (deflateEnd(&strm) != Z_OK) { fprintf(stderr, "deflateEnd failed.\n");

return 9;

} if (strm.total_out >

l) { printf("compressed size (%ld) is more than uncompressed (%d), do nothing\n", strm.total_out, l);

return 0;

} f = fopen(v[1], "w");

if (!f) ERR;

t = in;

while (t != s) { fprintf(f, "%c", *t);

t++;

}

17

�fprintf(f, "/Filter/FlateDecode/Length %ld", strm.total_out);

while (!isdigit(*t)) t++;

while (isdigit(*t)) t++;

while (*t != ’\n’) { fprintf(f, "%c", *t);

t++;

} fprintf(f, "\n");

for (i=0;

i<strm.total_out;

i<strm.total_out;

i++) fprintf(f, "%c", out[i]);

fprintf(f, "\nendstream\nendobj\n");

fclose(f);

return 0;

}

Note that this t ime, a bit different from how deflate.c works, we

output in the file i tself, not on s tdout, which eases the life in the

shell’s world. The simple following command does the trick very

well.

 cd out;

for i in ????.obj;

do ../inflate $i;

done

I know, I know. My programs deflate.c and inflate.c have wrong

names. But now it’s done and an important notion in the hacking

world is: laziness.

Gluing objects

And now for the last action: glue everything back together.

Things are a bit more complex. Or more specifically, verbose. It’s

not very complex.

Here is the m a i n function.

 int main(void) { get_root_info(&f);

get_files(&f);

dump(&f);

return 0;

}

We need to get the "root" and "info" stuff from the trailer, to let the

new PDF file start at the same position than the original one. What

new PDF file start at the same position than the original one. What

does it mean for a PDF file to "start?" Well, we have a list of object.

And one of them is the "root" of everything. This has to be specified

in the trailer. For "info" I don’t really know if it’s necessary or not. I

didn’t want to check, so I just include it . 18 �

The funct ion get_root_info is not very interesting. I won’t show it

here .

The funct ion get_files is funny. It looks for all the .obj files in the

current directory and puts them in a l ist . Then i t sorts the l ist

alphabetically, to get the object in the correct order for later on.

Here it comes.

 void get_files(pdf_file *f) { DIR *d = opendir(".");

struct dirent *e;

struct stat s;

obj *o;

if (!d) ERR;

while (1) { e = readdir(d);

if (!e) { if (errno) ERR;

break;

} if (e−>d_name[0] <

’0’ || e−>d_name[0] >

’9’ || !strstr(e>d_name, ".obj")) continue;

o = new_obj(f);

o−>file[FILENAME_MAX−1] = 0;

strncpy(o−>file, e−>d_name, FILENAME_MAX−1);

if (stat(e−>d_name, &s)) ERR;

o−>size = s.st_size;

} closedir(d);

qsort(f−>o.o, f−>o.size, sizeof(obj), cmp);

}

See the use of qsort to, well, sort the list of object. The libc is

friendly, sometimes.

And we finish that with d u m p which processes objects in order. It

And we finish that with d u m p which processes objects in order. It

s tores the number of bytes wri t ten so far in the s variable, and

u p d a t e s o−>offset for each object so that the trailer gets a correct

value for the starting offset of each object.

 void dump(pdf_file *f) { FILE *fi;

size_t s = 0;

obj_list *l = &f−>o;

obj *o;

int i;

int c;

s = printf("%%PDF−1.4\n%%\x88\x89\x90\x91\n");

for (i = 0;

i <

l−>size;

i++) { o = &l−>o[i];

o−>offset = s;

fi = fopen(o−>file, "r");

if (!fi) ERR;

19

�while (1) { c = getc(fi);

if (c == EOF) { if (errno) ERR;

break;

} if (fwrite(&c, 1, 1, stdout) != 1) ERR;

s++;

} if (fclose(fi)) ERR;

} printf("xref\n0 %d\n0000000000 65535 f \n", l−>size + 1);

for (i = 0;

i <

l−>size;

i++) printf("%10.10d 00000 n \n", l>o[i].offset);

printf("trailer\n");

printf("<</Size %d/Root %d 0 R/Info %d 0 R>>\nstartxref\n%d\n%%%%EOF\n", l−>size + 2, f−>root, f−>info, s);

fflush(stdout);

fflush(stdout);

}

So this program is the most complex one, indeed. We need to store

a list of objects. You just can’t process data on the fly. The trailer

forces us to "remember" some stuff for later use.

See the structures I had to create.

 typedef struct { char file[FILENAME_MAX];

size_t size;

size_t offset;

} obj;

typedef struct { obj *o;

int size;

int maxsize;

} obj_list;

typedef struct { int root;

int info;

obj_list o;

} pdf_file;

I wonder if a program using recursion rather than a l ist would not

be possible. Would it be smaller? more efficient? more elegant?

Well, this is not my style of programming, so I won’t dig too much

in that direction. People more in the functional programming may

have some funny ideas there.

And how to pi lot this program?

Easy.

2 0 �

 cd out;

../glue > TTT

And there you are. A nice, anonymous PDF file called T T T. Why this

And there you are. A nice, anonymous PDF file called T T T. Why this

strange name? Well, once again, laziness. I had to find one, I picked

up something in my brain, for no particular reason. Habits, maybe.

Weird habits? Maybe.

Automatizing the process

Obviously each t ime something new appears in there I had to run

the process from scratch once again.

There were many bugs. Some at the syntaxic level, like calling a

wrong function, wrong arguments, this kind of things. Some

others were due to a bad understanding of the PDF specification.

Some others to bad shell’s knwoledge.

There are many bugs that pop up here and there. A hacker l ives

with those beasts, looks for them, eliminates them. You get used to

it . Whatever procedure you put in yourself, you won’t avoid bugs.

So you need to develop here again a good culture of potential

problems.

One nasty source of problems comes from the tools you use and

the error messages they throw at your face. I specially think about

the compiler. Sometimes you just forget a ; and al l in a sudden you

get hundreds and hundreds of unrelated errors . Or you forget a }.

Or some minor stuff l ike that .

There again you live with that. You compile often, so you are sure a

compilation error can only originate from the few lines you

introduced and not somewhere else .

And you debug harder bugs too. I t may be frustrat ing sometimes.

Getting good habits, a good culture, takes time and devotion. You

have to bypass frustration and just keep going, up to success. I

mean, this is not research. There is a solution, you know that from

the beginning. So it’s just a matter of doing things properly to get

the expected result. That is what is so cool with hacking. The

results are there, necessarily.

results are there, necessarily.

And so, to get back to automation, I could have written a "pilot" in

C. But, traditionally, this is done in shell script.

We already saw the various shell’s commands, but to recapitulate,

here comes transform.sh.

 rm −f out/* cp trailer.obj out

21

�for i in ????.obj;

do ./deflate $i > out/$i;

done (cd out;

find −empty −exec cp ../{} . \;) (cd out;

for i in ‘grep −i limited *|cut −d : −f 1‘;

do ../empty $i > $i;

done) #(cd out;

for i in ‘grep −i limited *|cut −d : −f 1‘;

do cp $i $i.emp;

done) for i in *.n;

do cp $i out/‘echo $i|sed −e "s/\.n//"‘;

done (cd out;

for i in ????.obj;

do ../inflate $i;

done) (cd out;

../glue > TTT)

Each line of this file would require several dozens of C code. That’s

why shell programming is something to learn too. I t speeds things

up for basic data manipulat ion.

But some treatments are beyond the shel l and various command

line’s programs’ ability and you need to write more complex

p rogram.

program.

I do it in C, because that’s what I know best. Several years of

practice shaped my brain to easily think in C.

The main problem you face when you hack is bugs. And knowing a

language, practicing it over the years, gives you familiarity. You

know where to look for bugs. You know that when you looked here

and found nothing then there is nothing wrong there. This

knowledge you don’t get for systems and languages you don’t

know. So you can’t narrow the source of a problem. You can’t

become certain.

Well, that’s it.

Conclusion

Do these programs "think?"

They manipulate data, extract information. As you and I do

through our sensory system. Is i t comparable?

Some might say they are not complex enough. They just apply a

given procedure.

How are you certain you don’t work this way, huh?

I don’t pretend the programs here think. I t’s just not that simple to

give a convincing n o. Take that quest ion as an opportunity to think

about yourself, the world, life, the meaning (if any) in there and so

on .

Or not. I mean, i t could be seen as some kind of madness or sick

att i tude or whatever. I t’s just a tought experiment, based on

"reality" (as long as a hack is "real").

Anyway, I’m done with this hack. Let’s move on to something else.

(The magic of hacking. It never ends.)

(The magic of hacking. It never ends.)

(By the way, what is IEEE 754? Short answer: dig the web. Longer

answer: i t ’s just a standard to represent f loating point numbers in

computers. And yes, normal people would think it’s very boring.

But I am not normal and 22 �neither are you! Are you?)

Contact: sed@free.fr

Created: Mon, 06 Jul 2009 17:03:23 +0200

Last update: Mon, 06 Jul 2009 17:03:23 +0200

