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Abstract. We prove that, for infinitely many disjunctive normal form propositional calculus 
tautologies ~:, the length of  the shortest resolution proof of ~: cannot be bounded by any polynomial 
of the length of ~=. The tautologies we use were introduced by Cook and Reckhow (1979) and 
encode the pigeonhole principle. Extended resolution can furnish polynomial length proofs of 
these formulas. 

1. Definitions and background 

1.1. Resolution theorem proving 

Theorem proving using resolution was introduced by Robinson [8]. The method 
is applicable to first-order predicate calculus or to propositional calculus. If  the 
formula to be proved is a consequence of  axioms, resolution is used to prove the 
disjunction of the original formula with the negations of those axioms it depends 
on. Predicate calculus formulas are reduced to propositional calculus formulas by 
using quantifier elimination techniques. Furthermore, the formula to be proved is 

put into disjunctive normal fo rm (DNF).  The theorem proving task is then reduced 

to proving that a given D N F  propositional calculus formula is a tautology. For the 
purpose of showing nonpolynomial complexity, we consider only D N F  propositional 
calculus formulas. We use the notation '+ '  for logical 'or', juxtaposition for 'and' ,  
and ' "  for negation (x'  is 'not x'). An example of a D N F  propositional tautology 
is: abc' + ab'd + ab' c 'd '  + a 'd  + a' c'd'  + c. 

To define resolution we let s r be a D N F  propositional calculus tautology , and we 

describe how resolution produces a proof  of  s r. The conjunctions of which ~ is a 
disjunction are called clauses and ~: is considered to be a set of clauses. The variables 
and the negated variables of  which a clause is a conjunction are called literals. A 

clause is considered a set of  literals~ A clause covers a truth assignment to the 
variables in ~: if the truth assignment makes the clause true. The resolution procedure 
shows ~ to be a tautology by demonstrating that every truth assignment is covered 
by some clause in s r. The procedure starts with the original set of clauses in s r and 

repeatedly generates new clauses from existing ones. Each new clause is derived 
from two previously existing clauses and the new one covers only truth assignments 
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that are already covered by one of the two clauses from which it is derived. The 

procedure is successful if the empty clause (which covers all truth assignments) is 

finally generated. Two clauses a and fl can be resolved to get a new clause y if 

and only if there is exactly one variable x such that the literal x is in one of a or 

fl and the literal x' is in the other clause. The resolvent y is then defined to be the 

conjunction of all the literals other than x and x' that are contained in a or in ft. 

For example, if a is uvw'xz ~ and fl is vx'y'z ' ,  then y is uvw'y'z' .  We call this step 

eliminating x from a with ft. The clause ab'c cannot  be resolved with a'bc, nor with 

the clause cde'. 

1.2. Complexity o f  resolution 

The complexity of a resolution proof is taken to be the number of different clauses 

generated in the course of the proof. We show that, for a certain class of  tautologies, 

there is no polynomial p so that, for every member ~ of the class, the complexity 

of the shortest resolution proof  of s ~ can be bounded by p(c(~)),  where c(s ~) is the 
number of  clauses in ~:. Our definition of complexity is adequate for distinguishing 

between polynomial  and non-polynomial lengths of  proofs, even if  the lengths are 

counted in terms of how many characters are needed to write out the proofs and 

formulas. I f  a DNF tautology s r is written using N characters, all the variables in 

any clause appearing in the proof  can be written out using less than N characters, 

so any clause can be written out using at most a constant times N characters. 
The problem of recognizing tautologies is equivalent to recognizing those formulas 

whose negation is unsatisfiable. Since the satisfiability problem is an NP-complete 

problem, the set of proposit ionaltautologies is co-NP-complete. If resolution could 

always give proofs that are bounded polynomially in length, then co-NP would 

equal NP. That is considered to be unlikely by most people who study the P vs. NP 

problem. Nevertheless, resolution has not until now been shown to be nonpoly- 

nomial. (See [6] for a thorough discussion of the P vs. NP problem.) 

1.3. Proof trees 

We visualize resolution proofs as binary trees with the nodes labeled by clauses. 

The root node has the empty clause as a label. The immediate descendants of a 

node are labeled with the two clauses that the procedure resolved to generate the 
clause that labels the node. The leaves of  the tree are labeled with the original 

clauses of  the tautology whose proof is being represented. Note that many nodes 

in the tree may be labeled with the same clause, since a clause can be resolved with 

many other clauses. 

Example. A proof  tree for abc'+ ab'd + ab'c 'd '+ a 'd  + a 'c 'd '+ c is given as follows: 
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/ \  
C ~ C 

c'd' c'd 

7 \  / \ .  
ac'd'  a'c 'd'  a 'd ac'd 

/\ /\ 
b ' c' d ' abc' abc' ab ' d 

/ \  
a' c'd' ab' c'd'  

1.4. Logical completeness o f  resolution 

The resolution procedure is a nondeterministic generalization of the deterministic 

Davis-Putnam procedure (DPP) [4]. We show that resolution is logically complete 

by showing that DPP is logically complete. The DPP resolves clauses in a specified 

order. To start the DPP, one variable x is chosen and each clause containing the 

literal x is resolved with each clause containing the literal x', provided x is the only 

variable at which the two clauses disagree. The clauses that contain x or x'  are then 

discarded. Next, another variable is chosen and that variable is eliminated from all 

clauses that  contain it. The empty clause is ultimately generated if and only if the 

formula was a tautology. The order in which variables are eliminated can be specified 

according to which variable is contained in the shortest clause or which variable 

will produce the fewest new clauses when eliminated. 

Lemma 1,1 (Davis and Putnam [4]). Resolution is logically complete. 

Proof. We show that, using the DPP order of resolving clauses, every tautology has 

a resolution proof. Let ~: be a proposit ional  DNF tautology with m different variables 

v l , . . . ,  v,~ which are eliminated in that order. Let So be the set of clauses in ~, and 

let Si be the set of clauses that  remains after vi is eliminated, for i = 1 , . . . ,  m. The 

empty clause is the only Clause that Sm might contain. We use induction to show 

that, for each i = 1 , . . . ,  m, every truth assignment to v l , . . . ,  vm is covered by some 
clause from S~. Therefore, Sm must contain the empty clause. Since s c is a tautology, 

all truth assignments are covered by clauses in So. Suppose that all truth assignments 

are covered by clauses in Sk, we show that all truth assignments are also covered 

by clauses in Sk÷l. Suppose V is a truth assignment covered by clause a in Sk. The 
set Sk+ 1 is the result of eliminating /)k+l from S k. If  a does not contain l)k+ 1 or v~+~, 
then a is also in Sk÷l, so a clause from Sk÷~ covers V. Otherwise, let W be the truth 
assignment that is just like V except it assigns the opposite value to Vk+~. Let/3 be 
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a clause in Sk that covers W. Either/3 does not conta in  l)k+ 1 or v~,+l, in which case 

/3 is in Sk+l and /3 covers V, or the resolvent of a and /3  is in Sk+~ and covers V 

(also W). In any case there is a clause in Sk+l that covers V. [] 

1.5. Pigeonhole formulas 

In our proof  that  resolution has nonpolynomial  time complexity, we use a class 

of tautologies which we call pigeonhole formulas. These formulas were defined by 

Cook and Reckhow [3] who used them to illustrate the efficiency of adding variables 

as abbreviations for subformulas. We index the pigeonhole formulas as PF,, where 

n is simply a convenient quantity related to PF,. (PF, encodes the principle that if 

n pigeons sit in n + 1 holes, there must be an empty hole.) 

For the representation of truth assignments and clauses relating to PF,  it is 

convenient to refer to variables in PF, according to their position in (n by n + 1)-size 

arrays instead of  using double subscripts. We represent a clause by an array as 

follows: Let x be a variable with an assigned array Position. If a clause contains 

the literal x', then the array representing the clause contains a ' - '  in the position 

for x. If the clause contains the literal x, the array contains a ' + '  in the x position. 

Otherwise, the position for x remains blank in the clause array. A truth assignment 

is represented in a similar way by an array full of 'O's and ' l ' s ,  using '0' for variables 

assigned false and '1' for variables assigned true. A clause covers a truth assignment 

if and only if each ' + '  in the clause corresponds to a '1' in the truth assignment, 

and each ' - '  in the clause corresponds to a '0' in the truth assignment. Blanks in 

the clause array may correspond to either '0' or '1' in the array of a truth assignment 

covered by the clause. 

We define PF,  in terms of arrays: The formula PF,  is the disjunction of all 

possible clauses given by n by n + 1 arrays with exactly one whole column o f ' - ' s  

and blanks everywhere else plus the clauses given by arrays with exactly two '+  's, 

both in the same row, and blanks everywhere else. There are n + 1 arrays of the first 
type and ½(n3+ n 2) arrays of the second type. 

Example. PF2 in array notation is given as follows: 

1 2 3  1 2 3  1 2 3  1 2 3  1 2 3  1 2 3  
P 

2 - 2 2 2 2 2 

1 2 3  1 2 3  1 2 3  

11 11 ] 121 2 + +  2 +  + + .+  

PF, has n2+n variables and contains n+l+½(n3+n 2) clauses. For each n>O, 
let comp(PF,)  be the number of  clauses generated by the least complex resolution 
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proof  of PF,,. We show that the funct ion c o m p ( P F , )  is exponent ia l  in n. Therefore, 

c o m p ( P F , )  is not  bounded  by any  po lynomia l  of  the number  of  clauses in PF,. 

Lemma 1.2 (Cook  and  Reckhow [3]). For all n, PF,  is a tautology. 

Proof, If  a t ru th  ass ignment  V for the variables of PF .  has  two ' l ' s  in some row, 

then V is covered by a clause with ' + ' s  in those two posi t ions.  I f  V has at most 

one '1' in each row, then the array for V contains at most n ' l ' s ,  so one of the n + 1 

columns has on ly  'O's. Thus, V is covered by a clause with  ' - ' s  in that  column. 

Therefore, PF .  covers all t ruth assignments.  [] 

2.Theorem and proof 

2.1. Statement o f  the Theorem, beginning of  the proof 

Theorem. There exists a constant c, c > 1, so that, for sufficiently large n, every resolution 
proof of  PF ,  contains at least c" different clauses• 

Proof. Suppose we have a resolut ion p roo f  R of  PF ,  for some par t icular  n. For the 

whole proof, let k be [ ln] .  We start with a series of defini t ions and lemmas. 

Let FS1 consis t  o f  all sets of  k variables from PF ,  such tha t  no two variables in 

the set are on the same row or in the same column (using the array representat ion).  

(FS1 stands for ' f ixed sets of  ' l ' s '  for reasons to be seen later.) Let h(n) be the 

number  of  e lements  of  FS1. For  each set S in FS1 we shall  find a corresponding 

'h ighly complex clause '  (hcc) in the p roof  tree of  R. We define a funct ion g(n)  and  

show that  each hcc  can correspond to at most  g(n) different members  of FS1. 

Therefore, the p r o o f  R contains  at least f ( n )  = h ( n ) / g ( n )  different clauses. This 

funct ion f is shown  to be exponent ia l .  

2.2. Critical truth assignments 

We define CTA,  the set of  critical truth assignments (ctas), as follows: A truth 

assignment is cri t ical  if  it has exactly one '1" in every row and  exactly one '1' in 

each column, except  for one co lumn which we call the O-column (which consists 

entirely of  'O's). There  are ( n + l ) !  ctas. Each eta is covered by only one of  the 

original clauses, the  one with ' - ' s  in the cta's 0-column. I f  V is a eta with a '1' in 

row r at co lumn c, then we say row r V-corresponds to co lumn c and  column c 

V-corresponds to row r. Each row V-corresponds to some co lumn and each column, 

except the 0-column,  V-corresponds to some row. 

2.3. Hal f  zero clauses 

Define a half  zero clause (hzc) to be any  clause in the p r o o f  R that  has at least 

one column with exact ly 2k ' - ' s  and  n - 2 k  blanks. A hzc is said to present a eta 

~ : t - , I ~ ¢ -  :..~::~ ~ ~,. 

~enb"um~oor~,,:,~ ..... : ~ ,  ~ . . : ~ , ~ , ~  
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if the hzc covers the cta and  the 0-column of the cta is a co lumn  with exactly 2k 

' - ' s  in the hzc. Note  that  if a presents V, then a has at most  one ' + '  per row or 

co lumn and no ' + '  in the 0-column of V. We call the set of  hzcs HZC. 

Lemma 2.1. Every cta is presented by at least one hzc. 

Proof. Let V be a cta and  let p be the 0-column of V. The cta V is covered by the 

root clause of  the tree for p roof  R. Whenever  V is covered by a clause y, where 3/ 

is the resolvent of  clauses a and /3, one of  t~ or fl covers V also. Thus, we can 

follow a path down  the tree to a leaf so that every clause along the path covers V. 

The leaf  clause at the end  of  the path must have column p full o f  ' - ' s ,  since that 

is the only kind of  original  clause that covers V. As we move up the path from the 

leaf  to the root, at each step one variable is e l iminated by the resolut ion action and 

possibly some literals are added  to the clause on the path by the other  immediate  

descendant .  So, at each step on the path at most one ' - '  d isappears  from column 

p and some ' - ' s  might  be added  to column p. Column p remains  free o f ' + ' s  for 

all clauses on the path,  since all clauses on the path cover V and  p is the 0-column 

of  V. Thus, the n u m b e r  of  ' - ' s  in co lumn p starts at n and  ends at 0 and never 

goes d o w n  by more  than  one. At some point  the number  of  ' - ' s  in column p is 

exactly 2k. That clause is a hzc and  presents V. [] 

Lemma 2.2. I f  a clause t~, present in proof  R, covers a cta V with O-column p, then 

either ot has at least 2k  ' - ' s  in column p, or there is a hzc fl among the descendants 

o f  a in the proof  tree such that fl presents V. 

Proof. Suppose a has fewer than 2k ' - ' s  in column p. The a rgument  is essentially 

the same as the a rgument  proving Lemma 2.1. There is a path f rom t~ to a leaf that 

covers V such that every clause on the path covers V. A node  at which the number  

of  ' - ' s  in column p becomes  2k is the /3  we want. [] 

2.4. Neighboring. ctas 

Let V and W be two ctas and let p be the 0-column of  V, q the 0-column of  W. 

We call V and W neighbors if W is the result of  switching co lumns  p and q in V. 

We say W is the q-neighbor of  V and V is the p-neighbor  of  W. 

Lemma 2.3. Let a hzc ~ present a cta V with O-column p. Let q be a column different 

f rom p, and let r be the row that V-corresponds to column q. Suppose ot does not have 

a ' - '  in row r at column p and t~ does not have a "+" in row r at column q. Then ot 

covers the q-neighbor o f  V.. 

Proof. Let W be the q -ne ighbor  of  V. The truth assignments V and W differ only 

at row r, columns p and  q. Since t~, # '  - ", a,q # '  + ', V,p = "0", Vrq = '  1' and ~ covers 
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V, we must  have a~, = b l a n k  and  trrq = blank. Thus,  a has blanks wherever  W differs 

from V. Since a covers V, it follows that  a covers W. [] 

2.5. High ly  complex clauses 

We now define HCC,  the set of hccs (highly complex clauses), as a subset  of  HZC. 

Recall tha t  FS1 is the set o f  all sets S of  k variables such that  no two variables in 

S are in the same row or column.  Now, we assign a certain hzc as  to each S in 

FS1. First, define S-CTA to be the set of  ctas that  assign '1' to each variable in S. 

(The name  FS1 comes f rom the fact that  each member  S of  FS1 defines a fixed set 

of ' l ' s  for the ctas in S-CTA.)  Next, let S - H Z C  be the set of  all hzcs a such that 

a presents at least one m e m b e r  of  S-CTA. By Lemma 2.1, the set S - H Z C  is nonempty.  

The resolut ion procedure  generates new clauses one by one, so, let a s  be the first 

member  of  S - H Z C  genera ted  by the resolut ion procedure  in the p roo f  R. Note  that, 

in the p roo f  tree, no S-cta  is presented by any  descendant  of  as. H C C  is the set of 

clauses as  for S in FS1. 

Lemma 2.4. Each hcc has a t  least k + 1 columns c such that column c contains a ' + '  

or at least 2 k  " - ' s .  

Proof. Let S be in FS1 a n d  as  be the appropr ia te  hcc. Let V be an S-cta that is 

presented by as, and let p be the 0-column of  V. At least k of  the rows in as  have 

no ' - '  in column p and  con ta in  no variable from S: Of  the n rows in as, 2k rows 

contain ' - '  in column p a n d  k rows conta in  variables from S. That  leaves at least 

n - 3 k  rows, or at least k rows,  since n ~>4k. Each such row with no ' - '  in column 

p and no variables from S V-corresponds to a column. Call this set of  columns GC 

(good columns).  Let c o l u m n  q be from G C  and let row r be the row that V- 

corresponds to q. Ei ther  O~s has a ' + '  in co lumn q, or, by Lemma 2.3, as  covers 

the q-neighbor  of  V. Since V is an S-cta, any variable in S must  have a '1' in V. 

Therefore,  column p has  no  element of  S. Co lumn  q also has no e lement  of S, 

because row r was chosen  to contain no variable from S. So, the q-ne ighbor  of  V 

is also an  S-cta. Thus, the  q-neighbor  is not  presented by any descendan t  of  as. By 

Lemma 2.2, column q mus t  contain at least 2k ' - ' s  in as. Co lumn p together  with 

GC suppl ies  the promised  k + 1 columns. []  

We il lustrate Lemma 2.4 in the following diagram (n = 8, p = 9 ,  G C  = {3, 5, 7}): 

1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8 9  1 2 3 4 5 6 7 8 9  

1 1 -  - - 1 0 0 0 0 0 0 0 1 0  

2 2 2 0 0 0 0 0 0 1 0 0  

3 3 - + -  - 3 0 0 0 0 0 1 0 0 0  

4 4 - + 4 0 0 0 0 1 0 0 0 0  

5 5 - - 5 0 0 0 1 0 0 0 0 0  

6 6 -  6 0 0 1 0 0 0 0 0 0  

7 X 7 - +  - - 7 0 1 0 0 0 0 0 0 0  

6 x 8 - - 811 o o o o o o o o 
S as V 
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2.6. The function f (n)  

Each of  the h(n) members  of  FS1 supplies a hcc, but  this mapping  need not be 

one to one. To get a lower b o u n d  on the number  of  different hccs we may  divide 

h(n) by an  upper  bound g(n) on the number  of  sets in FS1 that  could  possibly 

supply a given hcc. Let t~ be in HCC.  I f  a is a s  for a part icular  S in FS1, then a 

has ' + ' s  or b lanks  in the pos i t ions  for variables from S. That  is true because as 
covers an  S-cta. Also, as  has  at most  one ' + '  per  column. We use the complexi ty  

of  a to bound  the number  o f  ways one could choose S in FS1 such tha t  a could 

be as. To get g(n) we count  the number  of ways one could assign k ' l ' s  to the 

variables of  PF, ,  so that  no two variables are in the same row or column,  there is 

no conflict with ' - ' s  in a,  and  i f  a co lumn of  a contains a ' + ' ,  that  is the only 

place to assign a '1' in that  column.  

Let A be a set of  k + 1 co lumns  that  have a ' + '  or at least 2k ' - ' s  in a. We can 

find A by L e m m a  2.4. For  each  co lumn in A, there are at most n -  2k places where 

we can assign a '1'. Whenever  we assign k ' l ' s ,  some number  i of  them is in the 

k + 1 columns from A, and  the remain ing  k - i  of  them are in the n -  k columns 

outside of  A. The number  i can be any integer from 0 to k. Given i, there are di 

ways to choose the columns with ' l ' s ,  where d i =  (k~-l)(~-~. For the i co lumns  from 

A we get at most  ( n - 2 k )  i ways  to choose the rows of  the ' l ' s  in those columns.  In 

the k -  i co lumns from outs ide of  A we get at most (n - i)!/(n - k)! choices for the 

rows for the ' l ' s ,  since each row can only  be used once. So, 

k ( n - - i ) t  
g ( n ) =  ,=o ~ d ' (n-2k) '~n-k)~"  

We find h(n) ,  the size o f  FS1, in the same way, except we have more  freedom 

to choose the rows for var iables  that  are in columns from A: 

k n! ( n - - i ) !  
h ( n ) =  Y~ d, 

,=o ( n - i ) ! ( n - k ) ! "  

(Note that  h(n) can also be wri t ten as ("~-1) n! / (n-k) ! . )  
The funct ion  f (n)  is h(n)/g(n) and  comp(PF. )>- - f (n) .  

2. Z The function f (n)  is exponential, conclusion of the proof 

Now let n >/200. 

h(n) ~ d, ( n - 2 k ) ' ( n - i ) !  
o d, 

>,=o ~ d, , (1 .49)"  

since ( n - 2 k ) / ( n - i ) <  1/1.49 (for i ~  k and  n > 4 0 ) .  Let m = [5~nJ. 
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We cont inue with the chain of  inequalit ies:  

f ( n ) >  ~ di 2 ( 1 . 4 9 ) " / 2 > ( 1  49°°1)" ,=m ,= (1-4-9) i > • ( n ~  > 200), 

because:  

" - ,  d, d, 
Y, ~1.49,------~<( ) (1.49) i '  i = 0  i = m  

since 
d, d,+, 

< for i +  1 < ~ n  
(1.49)' (1.49) ~+' 

(d,+l ( k + l - i ) ( k - i )  (n/5)(n/5) ) 
- > > 1 . 5  . 

d, ( i + l ) ( n - 2 k + i + l )  (n/25)(O.6n) 

So, f(n) > c" with c = 1.49 °°~ for n > 200. [] 

3 .  E x t e n s i o n s  

3.1. Extended resolution and regular resolution 

Regular resolution is resolut ion with the following restriction: if  clause a contains 

variable v and  clause fl does not  conta in  v, but some descendant  o f  fl in the p roo f  

tree does conta in  v, then a and fl may not  be resolved. I f  one follows a branch in 
the p roof  tree, a variable may not  be el iminated and then later be conta ined  again 

in a clause on the branch. Tseitin [9] has shown that  regular resolut ion is nonpoly-  

nomia l  (see also [5, 7]). Tseitin also invented extended resolut ion and  found  that  

extended resolut ion would yield short  proofs for his examples.  It turns out that  
extended resolut ion also yields proofs  of  PF,  with complexi ty on the order  of  n 4. 

In extended resolution we can add  variables that  abbreviate proposi t ional  formulas 

on the variables we already have. For  instance, if we are proving 0 and  the variable 

x does not  appear  in 0, then we can add  clauses that  are logically equivalent  to the 

negat ion of  x--)t(u, v, w,y, z) where A is a logical funct ion of  five variables and  

u, v, w, y, and  z appear  in 0. Such an extension by adding a definit ion does not  

change the status of  0 as a tau to logy or a nontautology.  
The p igeonhole  formulas are given by Cook and Reekhow as an example of  how 

the in t roduct ion  of  definitions can shorten a p roof  in a p roo f  system with slightly 

different syntax. We describe how extended resolution can produce a po lynomia l  

length p roof  of  PF ,  (following Cook ' s  and Reckhow's argument  [3]). 

The basic idea is to use induct ion:  reduce PFi to PFi_I while only generat ing 

po lynomia l  complexity.  When  this reduct ion is carded out n -  1 times, the only 
thing left is to prove PF1 which takes four clauses. We first go from PF,  to PF,_~: 

Let the variables in PF,  be Y~i for  i = 1 , . . . ,  n and j = l , . . . ,  n + l .  In t roduce 

variables x~,j for i = 1 , . . . ,  n - 1 a n d j  = 1 , . . . ,  n. The definit ion ofxi.j is y~,j +Yo,+~Y,,,J. 
In terms of  adding clauses that  represent  the negation of  that  definit ion we add:  
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! / ! t xi .y i jy . , j  a n d  a n d  ' Xi, jYi, jYi, n+] x~,jy.,jy~..+l a n d  ' x~jy~,j. In  a r r a y  n o t a t i o n  fo r  X2.a w e  

a d d  (n = 4): 

1 2 3 4 5 1  2 3 4 1 2 3 4 5 1  2 3 4 

~l I 11 I ] 2 - + 2 - - + 

3 3 

4 - 4 

1 2 3 4 5 1  2 3 4 2 3 4 5 1  2 3 4 

2 + - 2 + - 

3 3 
4 + 4 

1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  

2 2 2 
3 3 3 
4 4 4 

#1, f rom PF 4 #2 ,  f rom PF 4 #3,  f rom PF 4 

1 2 3 4 5  1 . 2 3 4  1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  1 I - 
2 
3 
4 + +  

#4,  f rom PF 4 #5 ,  def.  of x 1,1 #6,  def .  of x 1,1 

1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  

i l  I il I 
#7, def. of x 1,2 # 8 ,  def.  of x 1 ,2 #9,  resolves 1,5 

1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  

#10 ,  resolves 7 ,9  # 1 1 ,  resolves 2 , 1 0  # 1 2 ,  resolves 3 , 1 0  

1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  

# 13, resolves 6,11 # 14,  resolves 8 , 1 2  # 15, resolves 4 , 1 4  

1 2 3 4 . 5  1 2 3 4  

# 16, resolves 1 3 , 1 5  

x 1 , 1 x 1 , 2  

Fig. l. Generation of  xt.tx~,2 using extended resolution. 



The intractability of resolution 3 0 7  

1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  

I I 1 I 1 
1 - 1 - 1 

2 - 2 - 2 

3 - 3 - 3 

4 - 4 - 4 + + 

#1, from PF 4 #2, from PF 4 #3, from PF 4 
1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  

11 I 2 2 + - 2 

3 3 3 + - 
4 4 4 

#4, def. of x 1,1 #5, def. of x2, 1 #6, def. of x3,1 

1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  

I + - I l J 1 2 2 + - 2 
3 3 3 + - 
4 +  4 +  4 +  

#7, def. of x 1,1 #8, def. of x2,1 #9, def. of x3,1 

1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  

1 - 1 1 :  I ~1 J 
2 - 2 - 2 - 
3 - 3 3 - 
4 - 4 4 - 

# 1 O, resolves 1,4 # 11, resolves 5,10 # 12, resolves 6, 11 

1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  1 2 3 4 5  1 2 3 4  

i[ - 11 - I 1 - 

- 2 - 2 - 

- 3 - 3 - 

+ - 4 +  - 4 +  - 

# 13, resolves 2,7 # 14, resolves 8,13 # 15, resolves 9, 14 

1 2 3 4 5  1 2 3 4  2 3 4 5  1 2 3 4  

il _ 1 - i - -  2 - -  

- -  3 - -  

4~ 4 
# 1 6 ,  r e s o l v e s  3 ,  1 5 # 1 7 ,  r e s o l v e s  1 2 ,  1 6 

I 

x~,1x~.1x3,1 

F i g .  2 .  O e n e r a t i o n  o f  x l , l x2 ,1x3 ,1 '  ' ' u s i n g  e x t e n d e d  r e s o l u t i o n .  

Each of  the original "two ' + ' s  in a row' clauses for PF,-1 can be generated together 
with only seven other new clauses by resolution. (See Fig. 1 for an example with 
n = 4.) Each of  the original 'column o f ' - ' s '  clauses for PF,-1  can be generated 
together with 2 ( n - 1 ) + 1  other new clauses using resolution. (See Fig. 2 for an 
example  with n = 4 . )  To prove the instance of  PF,_~, more new variables are 

introduced so that the problem can be reduced to PF,_2, etc. The whole  process 

needs  only on the order of  n 4 new clauses. 

3.2. Further related research 

The most obvious further questions have to do with extended resolution. One 
goal is to prove that extended resolution is also nonpolynomial .  The task seems 
very difficult since using the extension rule we are able to simulate meta-arguments 
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that a given formula is a tautology. Another goal would be to prove that extended 
resolution or some extended Frege system as defined in [3] can polynomially simulate 
a Turing machine that recognizes tautologies. This task also seems very difficult. 
Possibly, the question of  the complexity of extended resolution will only be solved 
when the NP vs. co-NP problem is resolved. Finally, it may be possible to show 
that Frege systems without the extension rule also generate nonpolynomial com- 
plexity on the pigeonhole formulas. 
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